
Online Training Refinement Network and
Architecture Design for Stereo Matching

Yu-Sheng Wu∗, Sih-Sian Wu∗, Tan Huang, Liang-Gee Chen, Fellow, IEEE
DSPIC Lab, Department of Electrical Engineering

National Taiwan University, Taiwan

gingerwu10@gmail.com, benwu@video.ee.ntu.edu.tw, danhuang0313@gmail.com, lgchen@ntu.edu.tw

Abstract—Sending local data to cloud servers is vulnerable to
user privacy, and its long update latency. Meanwhile, the state-of-
the-art stereo matching method is still computation demanding,
fine-tuning the whole model on-device is not a practicable
solution because of the limited power budget and computation
ability on edge devices. In this study, we propose a two-stage
online stereo matching refinement system, using an additional
light-weight network to learn the domain gap between local
data and cloud training data. We define a load-gain ratio to
evaluate computer efficiency. This refinement system has a much
better load-gain ratio than fine-tune. (0.2 v.s. 35.7 operation
overhead/accuracy gain) Nevertheless, we only disburse 0.2% of
additional parameters and 0.7% additional computation as set by
inference the stereo matching model. Thus, it would be a suitable
choice for an online training scenario. With re-scheduling the
training pipeline, we use a patch-based layer fusion technique
and reduce the off-chip memory bandwidth by 97%.

Index Terms—stereo matching, online training, refinement
network, device personalization, layer fusion, patch-based layer
fusion

I. INTRODUCTION

Depth estimation is the fundamental element of 3D vi-

sion. In computer vision tasks, such as autonomous driving,

robotics, and AR, rely on dense and reliable 3D recon-

structions of the sensed environment. With groundbreaking

progress made by deep learning [1], current state-of-the-art

(SOTA) stereo matching methods rely on deep convolutional

neural networks (CNNs) taking a pair of left-right images

to estimate the dense disparity map. Meanwhile, the neces-

sity of additional training of deep neural networks (DNN)

on edge device applications has increased due to the per-

formance degradation when applying DNN models on the

device. Different data distribution than the training one and

approximated implementation degrades the performance when

applying DNN-based stereo engines in real-world cases.

To enhance the performance in local scenarios, additional

training with data received from the device can improve the

inference performance by tuning the model to fit into its

personal environment. Device personalization or insitu per-
sonalization is an essential function for IoT systems. Previous

methodologies prefer off-line training by sending personal data

to the cloud server and receiving updated models consistently,

only provide inference mode in dedicated accelerators. How-

ever, sending data to cloud servers can have vulnerabilities

∗
Joint first author

Fig. 1: Orientation of this work. We proposed an additional

light-weight network to learn the domain gap without retrain-

ing the whole stereo matching model.

which is a privacy concern for users, and its long update

latency can be a severe weakness for real-time usage on edge

devices. As a consequence, realize on-device DNN training

has become an attractive solution to such problems.

Due to the limited energy budget and computation ability

on an edge device, retraining the whole stereo matching

model on-chip is not a reasonable solution to realize device

personalization within depth estimation tasks. For instance,

retraining PSMNet [2] with full-HD images at 24 fps scenario,

need processing about 548 T of operations per second. In

current accelerators of machine learning, [3] got 3.6 TOPS

and [4] got 0.3 TOPS peak performance, about 3 orders away

from the required performance.

The proposed system in this study has orientation as shown

in Fig. 1. We can organize edge stereo matching system form

three aspects including additional computation, adaptive
performance,and trainable parameters. The rightmost po-

sition of the spectrum would be Inference, we inference pre-

trained stereo matching model without additional computation

and trainable parameters but has the least adaptive ability.

In the contrast, the leftmost position of the spectrum would

be Fine-tune, the whole stereo matching model is trainable

and has the best adaptive performance, but the computation

overhead is large. Between these two positions of the spectrum

would be Refine. We fixed the pre-trained stereo matching

model and attached an additional light-weight network to learn

the domain gap between local data and cloud training data.

In summary, the contribution of this work is twofold:

1) A two-stage online training refinement system for stereo

978-1-7281-9201-7/21/$31.00 ©2021 IEEE

20
21

 IE
EE

 In
te

rn
at

io
na

l S
ym

po
si

um
 o

n
C

irc
ui

ts
 a

nd
 S

ys
te

m
s (

IS
C

A
S)

 |
97

8-
1-

72
81

-9
20

1-
7/

20
/$

31
.0

0
©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

IS
C

A
S5

15
56

.2
02

1.
94

01
46

8

Authorized licensed use limited to: National Taiwan University. Downloaded on December 01,2021 at 06:22:29 UTC from IEEE Xplore. Restrictions apply.

(a) (b) (c)

Fig. 2: Overview of training procedure of (a) feed forward propagation (b) back propagation and (c) weight gradient update.

matching is proposed with only 0.2 % additional param-

eter and 0.7 % computation compared to the inference

stage.

2) The proposed architecture achieves 97 % bandwidth

reduction compared to direct implementation.

II. RELATED WORKS

A typical way of training a deep learning model includes

three computations. 1) Feed forward propagation (FF); 2)
back propagation (BP); and 3) weight gradient update
(WG). Fig. 2 shows the overview training procedure with a

simple network.

WG has different dataflow from FF/BP, thus unified PE

array may need additional control modules or having per-

formance degradation, but a separate PE array may sacrifice

flexibility. Bit precision affects the algorithm performance and

we expect to find a proper bit width without accuracy loss.

Also, these works simulate their result on a classification task,

which has different network characteristics from the stereo

matching task. The algorithm differences between training

and inference lead to different requirements of systems and

hardware architecture.

First, BP and WG operations are an additional process for

training. WG phase needs input to generate from the FF phase.

Besides, the WG phase has quite a different computation flow

with FF/BP phase. The data dependency with more interme-

diate data and the irregular computation flow increase more

consideration in training hardware design. Second, training

usually proceeds in waves of the mini-batches, a set of inputs

grouped to processed in parallel, which makes the memory

footprints much higher because of the limited on-chip buffer.

The above reasons implement a hardware accelerator that

supports training a more difficult task than inference.

Yuan et al. [5] support multi-level sparsity convolution PE

arrays, additional online tuning PE for FC layers bring out

the pioneer hardware accelerator that tried to put learning

feature on-chip. Fleischer et al. [6] proposed a processor core

supporting full training and inference in the system. Lee et al.
[4] present a energy-efficient on-chip learning accelerator. By

exploiting sparsity inactivation, the sparsity-aware PE array

gets higher throughput. Also, the input load balancer resolves

PE utilization degradation due to sparsity-aware dataflow.

Lu et al. [7] re-arrange the saving weight and reduce the

processing latency. Also, they try to mix max-pooling into the

ReLU module and reduce further memory requirements. Choi

et al. [8], [9] design the hardware friendly lossless training

procedure, applying the suitable batch normalization method

with local maximum quantization, and the bit flexible PE array

supporting different precision data computation.

III. PROPOSED REFINEMENT NETWORK

A. Proposed Hardware Friendly Refinement Network

The proposed network is composed of two stages, as shown

in Fig. 3. The first stage is the pre-trained stereo matching

model which provides the original disparity prediction, and

the second stage is the refinement network which learns the

residual signals from local dataset. The first stage network

takes the stereo pair IL and IR as input and produces the initial

disparity. The SOTA stereo matching model integrates whole

stereo matching process, hence the network can generate

nearly optimal disparities results on the target domain. Previ-

ous work [10] has shown that cascading additional networks

on the initial disparity prediction network, learning multi-

scale residual signals can get further improvement on trained

dataset. The summation of the residual and the initial disparity

is considered as the refined disparity map.

To train the proposed refinement system, we adopt the

smooth L1 loss function, which is applied in [2]. Smooth L1

loss is widely used in regression for stereo matching because

of its robustness and low sensitivity to outliers, as compared

to L2 loss. The loss function is defined as

L(d, d̂) =
1

N

N∑
i=1

smoothL1(di − d̂i)

in which

smoothL1
(x) =

{
0.5x2 if |x| < 1

|x| − 0.5 otherwise,

where N is the number of labeled pixels, di and d̂i are the

ground truth and predicted disparity of the pixel i, respectively.

Authorized licensed use limited to: National Taiwan University. Downloaded on December 01,2021 at 06:22:29 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: Overview of the proposed framework. The propose

light-weight refine network is blocked by red dashed lines.

The loss function is differentiable, hence the network can be

trained end-to-end.

B. Proposed Hardware Architecture of Refinement Network

The direct implementation of the refinement network with

structure of LNPU [4] is shown in Fig. 4 (a). The bandwidth

requirement is 36.73 GB/s, and overall computation is 1.62

TFLOPs. DRAM access bandwidth is a relatively critical

bottleneck with about 2 orders difference. Hence, the proposed

architecture focuses on reducing DRAM access bandwidth.

1) Heterogeneous Layer Fusion: The layer fusion [12]

is a widely adopted technique to reduce off-chip memory

bandwidth, which concatenates operations of adjacent layers.

The output activation of the previous layer is the input of

the next layer, which is stored in on-chip memory instead of

off-chip memory. The mini-batch serialization (MBS) CNN

training approach [11] significantly reduces memory traffic

by partially serializing mini-batch processing across groups

of layers.

The timing pipeline after applying MBS is shown as Fig. 4

(b). The processing stage of one input sample in the FF phase

is separated from the BP/WG phase. We explore the inter-layer

reusable data between adjacent layers, which are indicated by

the red dash line. We save the memory footprint of these

intermediate data by separating the computation into blocks

size, each block can directly compute through multiple layers

in the FF phase with activation Act brought on-chip. However,

in the BP and WG phase, we iterative process the block result

through multiple layers by reusing the activation gradient δ
on-chip.

However, the activations Act generated in the FF phase still

need to be stored off-chip DRAM for data reuse and then

reloaded in the WG phase since there is a long data reuse

distance and there isn’t enough on-chip buffer to keep the

whole result.

To eliminate the long data reuse distance between the FF

phase and the WG phase, we proposed a re-scheduled dataflow,

patch-based layer-fusion training procedure. The core concept

is that we merge three training phases into a cycle, and split

the activation sample into further smaller partition – patch.

Unlike the MBS method which illustrates in the last paragraph,

each patch will not only finish processing multi-layer FF

computation, but also multi-layer BP and WG computation at

the same time. This approach will finish one patch’s complete

training procedure before doing the next patch’s procedure,

and the timing pipeline is referred to as Fig. 4 (c).

The benefit of this kind of dataflow is that we can directly

reuse the generated activation and get the partial weight

gradient by temporally buffering the reusable activation until

the patch procedure is done. The split patch size is smaller

than the block size in the aforementioned paragraph since we

need to keep more intermediate data simultaneously, including

the patch pyramid of activations, patch pyramid of activations

gradients, the partial sum of weight gradients, and weights.

IV. EXPERIMENTAL RESULTS

A. Performance Evaluation of Proposed Network

We choose PSMNet [2] fine-tuned network on KITTI 2015

[13] as our pre-trained network, and we choose different video

sequences in DrivingStereo [14] as our target dataset. The

overall performance on the different datasets is shown as Table

I and visualization of one frame is shown in Fig. 5. This

refinement system has a much better load–gain ratio k than

finetune. For a flexible way to enhance the overall system

performance, we can collect the failure examples and use idle

time to fine-tune.

TABLE I: The performance on different dataset

Accuracy

Foggy Sunny Rainy Cloudy

Inference 94.2 95.3 92.5 97.3

Finetune 98.9 97.9 98.1 98.3

Refine (Proposed) 96.4 96.3 95.9 97.55

k = Op. Overhead/Acc. Gain
kFinetune 42.5 76.9 35.7 200

kRefine 0.3 0.7 0.2 2.8

Fig. 6 shows the comparison between the different simu-

lation modes. The inference system has 5.48 M parameters

and the refinement system has 5.49M parameters with 0.2%

parameter overhead. In operation, processing 1 full-HD sam-

ple, we got 9.28 TFLOPs in inference mode, 27.8 TFLOPs

in finetuning mode with 200% operation overhead. In the

contrast, we got only 9.35 TFLOPs in refine mode with 0.7%

operation overhead.

B. Ablation Studies for Network Configuration

We also tested different layer sizes and multi-scale tech-

niques. Fig. 7 (a), shows the results of testing different

hidden layer numbers and we found that the baseline network

has saturated performance and thus it has the best cost-

performance ratio. In Fig. 7 (b) and (c), although we can

get better performance of disparities and receptive field with

Authorized licensed use limited to: National Taiwan University. Downloaded on December 01,2021 at 06:22:29 UTC from IEEE Xplore. Restrictions apply.

(a) (b) (c)

Fig. 4: Timing pipeline of refinement network applying (a)LNPU [4] architecture, (b) MBS [11] architecture and (c) the

proposed.

Fig. 5: Frame 114th of the raining scene in the driving stereo

dataset [14].

(a) Comparison of parameters (b) Comparison of operation

Fig. 6: Comparison of overhead between different simulation

mode.

higher multi-scale rate, the cost is much higher than the bought

out improvement. Over the above analysis, we finally choose

the baseline model for the following up architecture design

because of the best cost-performance ratio.

C. Bandwidth Comparison With Different Techniques

The proposed approach achieves the best bandwidth reduc-

tion, which is shown in Fig. 8. With the elimination of interme-

diate result off-chip memory footprint, we can achieve a 97%

of bandwidth reduction and meet the hardware specification.

(a) Plane (b) Dilation

(c) Down-sampling

Fig. 7: Comparison of overhead between different simulation

mode.

Fig. 8: Bandwidth comparison between different optimization

approaches

V. CONCLUSION

We propose a two-stage online stereo matching refinement

system. We fixed the pre-trained stereo matching model and at-

tached an additional light-weight network to learn the domain

gap between local data and cloud training data. This system

Authorized licensed use limited to: National Taiwan University. Downloaded on December 01,2021 at 06:22:29 UTC from IEEE Xplore. Restrictions apply.

has a much better load–gain ratio than fine-tune. The proposed

network disburses 0.2 % of additional parameters and 0.7 %
additional computation as set by inference the stereo matching

model. We exploited the network characteristics of refinement

network and re-schedule the training procedure dataflow. A

patch-based layer-fused training procedure is proposed, which

can finally save 97 % of bandwidth.

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[2] J.-R. Chang and Y.-S. Chen, “Pyramid stereo matching network,” in
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2018, pp. 5410–5418.

[3] C.-H. Lin, C.-C. Cheng, Y.-M. Tsai, S.-J. Hung, Y.-T. Kuo, P. H. Wang,
P.-K. Tsung, J.-Y. Hsu, W.-C. Lai, C.-H. Liu et al., “7.1 a 3.4-to-
13.3 tops/w 3.6 tops dual-core deep-learning accelerator for versatile
ai applications in 7nm 5g smartphone soc,” in IEEE International Solid
State Circuits Conference (ISSCC), 2020, pp. 134–136.

[4] J. Lee, J. Lee, D. Han, J. Lee, G. Park, and H.-J. Yoo, “7.7 lnpu: A
25.3 tflops/w sparse deep-neural-network learning processor with fine-
grained mixed precision of fp8-fp16,” in IEEE International Solid State
Circuits Conference (ISSCC), 2019, pp. 142–144.

[5] Z. Yuan, J. Yue, H. Yang, Z. Wang, J. Li, Y. Yang, Q. Guo, X. Li, M.-F.
Chang, H. Yang et al., “Sticker: A 0.41-62.1 tops/w 8bit neural network
processor with multi-sparsity compatible convolution arrays and online
tuning acceleration for fully connected layers,” in IEEE Symposium on
VLSI Circuits, 2018, pp. 33–34.

[6] B. Fleischer, S. Shukla, M. Ziegler, J. Silberman, J. Oh, V. Srinivasan,
J. Choi, S. Mueller, A. Agrawal, T. Babinsky et al., “A scalable multi-
teraops deep learning processor core for ai trainina and inference,” in
IEEE Symposium on VLSI Circuits, 2018, pp. 35–36.

[7] C.-H. Lu, Y.-C. Wu, and C.-H. Yang, “A 2.25 tops/w fully-integrated
deep cnn learning processor with on-chip training,” 2019, pp. 65–68.

[8] S. Choi, J. Sim, M. Kang, Y. Choi, H. Kim, and L.-S. Kim, “A 47.4
μj/epoch trainable deep convolutional neural network accelerator for in-
situ personalization on smart devices,” in IEEE Asian Solid State Circuits
Conference (A-SSCC), 2019, pp. 57–60.

[9] S. Choi, J. Shin, Y. Choi, and L.-S. Kim, “An optimized design technique
of low-bit neural network training for personalization on iot devices,”
in Design Automation Conference (DAC), 2019, pp. 1–6.

[10] J. Pang, W. Sun, J. S. Ren, C. Yang, and Q. Yan, “Cascade residual learn-
ing: A two-stage convolutional neural network for stereo matching,” in
IEEE International Conference on Computer Vision (ICCV) Workshop,
2017, pp. 887–895.

[11] S. Lym, A. Behroozi, W. Wen, G. Li, Y. Kwon, and M. Erez, “Mini-batch
serialization: Cnn training with inter-layer data reuse,” arXiv preprint
arXiv:1810.00307, 2018.

[12] M. Alwani, H. Chen, M. Ferdman, and P. Milder, “Fused-layer cnn accel-
erators,” in IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 2016, pp. 1–12.

[13] M. Menze and A. Geiger, “Object scene flow for autonomous vehicles,”
in IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2015, pp. 3061–3070.

[14] G. Yang, X. Song, C. Huang, Z. Deng, J. Shi, and B. Zhou, “Driv-
ingstereo: A large-scale dataset for stereo matching in autonomous
driving scenarios,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2019, pp. 899–908.

Authorized licensed use limited to: National Taiwan University. Downloaded on December 01,2021 at 06:22:29 UTC from IEEE Xplore. Restrictions apply.

